viernes, 20 de junio de 2008

TRIGONOMETRÍA

DATOS GENERALES.
1. Asignatura: Matemática XI Módulo I
2. Profesor: Samuel A. Castillo R.
3. Área: Trigonometría.
4. Tema: Introducción a la trigonometría
5. Fecha de ejecución:
6. Valor:
7. Bibliografía: Trigonometría Fredd Spark. Trigonometría. Earl Swokowski

II. OBJETIVOS ESPECÍFICOS

1. Señalar los aspectos importantes de la evolución de la trigonometría.


III. ACTIVIDADES Y ASIGNACIONES

1. Leer reflexivamente el material de apoyo sobre los temas detallados a continuación:
Trigonometría
 Aspectos históricos

IV. CONTENIDO

INTRODUCCIÓN

En esta edad tecnológica, las matemáticas son más importantes que nunca. Cuando los estudiantes terminen sus clases, es cada vez más probable que usen las matemáticas en su trabajo y en la vida diaria: para operar equipos de computación, planificar horarios y programas, leer e interpretar datos, comparar precios, administrar las finanzas personales y ejecutar otras tareas para resolver problemas. Todo lo que aprendan en matemáticas y la manera en que adquieran ese conocimiento les proporcionará una preparación excelente para un futuro exigente y en constante cambio.

¿Que es la trigonometría?
Trigonometría, rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de triángulos, de las propiedades y aplicaciones de las funciones trigonométricas de ángulos. Las dos ramas fundamentales de la trigonometría son la trigonometría plana, que se ocupa de figuras contenidas en un plano, y la trigonometría esférica, que se ocupa de triángulos que forman parte de la superficie de una esfera.

La palabra trigonometría procede de tres vocablos tri: que significa tres; gonia: significa vértice, y metron medida. Es decir trigonometría es medida de triángulos. Se le ha definido también como la ciencia de la medida indirecta.

Por medio de la trigonometría pueden ser calculadas distancias que no se pueden medir directamente. Tal cálculo se realiza mediante seis razones que se denominan funciones trigonométricas.

Las primeras aplicaciones de la trigonometría se hicieron en los campos de la navegación, la geodesia y la astronomía, en las que el principal problema era determinar una distancia inaccesible, como la distancia entre la Tierra y la Luna, o una distancia que no podía ser medida de forma directa. Otras aplicaciones de la trigonometría se pueden encontrar en la física, química y en casi todas las ramas de la ingeniería, sobre todo en el estudio de fenómenos periódicos, como el sonido o el flujo de corriente alterna.

La historia de la trigonometría se remonta a las primeras matemáticas conocidas, en Egipto y Babilonia. Los egipcios establecieron la medida de los ángulos en grados, minutos y segundos.

Hiparco de Nicea

Fundador de la trigonometría, autor del primer catálogo de estrellas, que incluía la posición de 1026 aparte de proponer una clasificación de dichos objetos en diversas clases de acuerdo con su brillo. Sus teorías sobre la Luna y el Sol fueron reasumidas, tal cual, por Tolomeo. Determinó la distancia y tamaño tanto del Sol como de la Luna. Comparando sus estudios sobre el cielo con los de los primeros astrónomos, Hiparco descubrió la precisión de los equinoccios. Sus cálculos del año tropical, duración del año determinada por las estaciones, tenían un margen de error de 6,5 minutos con respecto a las mediciones modernas. También inventó un método para localizar posiciones geográficas por medio de latitudes y longitudes.

Tolomeo (c. 100-c. 170)

Claudio Tolomeo, fue un astrónomo y matemático que dominó el pensamiento científico hasta el siglo XVI por sus teorías y explicaciones astronómicas. Posiblemente nació en Grecia, pero su verdadero nombre, Claudius Ptolemaeus él Contribuyó a las matemáticas con sus estudios en trigonometría y aplicó sus teorías a la construcción de astrolabios y relojes de sol.

El tratado de la esféricas de Meneláo, que se sitúa hacia el fin del primer siglo de nuestra era, proporciono a claudio Ptolomeo de Alejandría ( h.90 - h.168) las proposiciones fundamentales de trigonometría esférica en particular el celebre teorema de menéalo.

La trigonometría desarrollada por árabes

A finales del siglo VIII los astrónomos árabes, que habían recibido la herencia de las tradiciones de Grecia y de la India, prefirieron trabajar con la función seno. En las últimas décadas del siglo X ya habían completado la función seno y las otras cinco funciones y habían descubierto y demostrado varios teoremas fundamentales de la trigonometría tanto para triángulos planos como esféricos. Varios matemáticos sugirieron el uso del valor r = 1 en vez de r = 60, lo que produjo los valores modernos de las funciones trigonométricas.

Los árabes calcularon tablas precisas en división sexagesimal; entre ellos destacó en particular Abu al-Wafa al - Buzadjami (940 - 997) por las divisiones en cuarto de grado, con cuatro posiciones sexagesimales. Por otra parte, este matemático, introdujo, con otro nombre, la tangente y la secante al lado del seno.

“Tratado del cuadrilátero” de Nasir al - Din al - Tusi (1201 - 1274). En esta obra, el cuadrilátero está formado por un triangulo esférico y un circulo máximo y permite emplear el teorema de Menelao.. . Esta resolución dice: “Cuando el triangulo viene dado mediante sus 3 ángulos, se resuelve gracias al triángulo suplementario”.

La trigonometría en Occidente

El occidente se familiarizó con la trigonometría árabe a través de traducciones de libros de astronomía arábigos, que comenzaron a aparecer en el siglo XII. El primer trabajo importante en esta materia en Europa fue, De triangulus escrito por el matemático y astrónomo alemán Johann Müller, llamado Regiomontano. Durante el siguiente siglo, el también astrónomo alemán Georges Joachim, conocido como Rético, introdujo el concepto moderno de funciones trigonométricas como proporciones en vez de longitudes de ciertas líneas.

Los primeros trabajos matemáticos del francés Français Viéte (1540 - 1603) se referían a la trigonometría. Su Canon matemáticas (1579) es una tabla de seis líneas trigonométricas calculadas de minuto en minuto para el radio 100.000.. Esta tabla está acompañada de fórmulas para la resolución de triángulos planos y esféricos. . Este matemático también mostró la analogía entre estas fórmulas y las del desarrollo en potencias del binario. Desde entonces, la trigonometría, como estudio de las líneas circulares, y el álgebra delos polinomios se prestan mucho apoyo.

La trigonometría en los tiempos modernos

En el s. XVII, Isaac Newton (1642 - 1727) inventó el cálculo diferencial e integral. Uno de los fundamentos del trabajo de Newton fue la representación de muchas funciones matemáticas utilizando series infinitas de potencias de la variable x. Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.

Por último, en el siglo XVIII, el matemático suizo Leonhard Euler fue el que fundó verdaderamente la trigonometría moderna y definió las funciones trigonométricas utilizando expresiones con exponenciales de números complejos. Esto convirtió a la trigonometría en sólo una de las muchas aplicaciones de los números complejos.

También se le debe a este matemático el uso de las minúsculas latinas a, b, c para los lados de un triángulo plano o esférico y el de las mayúsculas correspondientes A, B, C para los ángulos opuestos. Además, Euler demostró que las propiedades básicas de la trigonometría eran simplemente producto de la aritmética de los números complejos.

Isaac Newton
El más grande de los matemáticos ingleses. Su libro "Principia Mathemáthica" basta para asegurarle un lugar sobresaliente en la Historia de las matemáticas. Descubrió simultáneamente con Leibnitz el Cálculo diferencial y el Cálculo integral. En Algebra le debemos el desarrollo del binomio que lleva su nombre. Según Leibnitz "Si se considera la matemática creada desde el principio del mundo hasta la época en que Newton vivió. Lo que él realizó fue la mejor mitad".

Leonhard Euler
Fue un matemático suizo, cuyos trabajos más importantes se centraron en el campo de las matemáticas puras, campo de estudio que ayudó a fundar.

Euler nació en Basilea y estudió en la Universidad de Basilea con el matemático suizo Johann Bernoulli, licenciándose a los 16 años. En 1771, cuando estalló un gran fuego en la ciudad, llegando hasta la casa de Euler, un compatriota de Basilea, Peter Grimm, se arrojó a las llamas, descubrió a Euler, y lo salvó llevándolo sobre sus hombros. Si bien se perdieron los libros y el mobiliario, se salvaron sus preciosos escritos.

Euler continuó su profuso trabajo durante doce años, hasta el día de su muerte, a los setenta y seis años de edad.

2 comentarios:

gladysc53 dijo...

mUT BIEN SU BLOG

Unknown dijo...

Me parece muy interesante, acabo de apenas verlo seguire leyendo el mismo, se lo pasare a mi hermano!