martes, 19 de junio de 2012

LÍMITES

LÍMITE DE UNA FUNCIÓN:




LÍMITE DE UNA FUNCIÓN:
El concepto de límite es el más importante en el cálculo, y es el que distingue a éste de todos los estudios anteriores en matemática. El concepto que tenemos de límite en nuestra vida diaria es aplicable de manera similar al de concepto de límite de una función, es decir “muy próximo a”; “muy cercano a”.


Consideremos la función f


Cuando los valores de x se aproximan a "a" ; los valores de f(x) se aproximan a "L". El valor f(x) = L es el que se conoce como límite de la función. Esto se representa de la siguiente forma:
Veamos esto con otro ejemplo:



En la tabla se muestra la aproximación del valor "x" (sombreado de verde) al número 2, en la columna adyacente esta como el de "y" se aproxima a 3.
Un dato curioso en el caso que la x sea demasiado grande se lee:


Para simplificar los procesos en el calculo de los límites emplearemos algunos teoremas:

Por ejemplo se deseamos calcular el límite de una función lo que hacemos en primera instancia es remplazar la variable por el valor al que se aproxima.




Otros ejemplos 



Al sustituir la variable no todo el tiempo obtenemos un número, se pueden obtener formas indeterminadas , entre estas formas tenemos la forma 0/0. En estos casos una vez verificado la forma indeterminada, buscamos un mecanismo que permita eliminar esta forma.


Mas ejemplos



Esta forma indeterminada también se aprecia cuando intervienen radicales 




Mas ejemplos:





















Continuara....... aun se esta editando

1 comentario:

Hernan Rodriguez dijo...

que bien veo que aun continua con su blog siga asi profe, y seria mucho mejor si se hiciera algunos videos propios con ejemplos sencillos. saludos.